CSCI 2570 Introduction to Nanocomputing

Probability Theory

John E Savage

- The manufacture of devices with nanometerscale dimensions will necessarily introduce randomness into these devices.
- Some device dimensions are so small that their position cannot be accurately controlled
- For this reason, probability theory will play a central role in this area

Sample Spaces

- Probabilities estimate the frequency of outcomes of random experiments.
- Outcomes can be from a finite or countable sample space (set) Ω of events or be tuples drawn over reals R.
 - Coin toss: Ω = {H,T}
 - Packets to a URL per day: $\Omega = N$ (positive integers)
 - Rain in cms/month in Prov.: $\Omega = R$ (reals)
 - Rain and sunshine/month: Ω = R²

- Sample space: all possible outcomes
- **Events**: A family \boldsymbol{F} of subsets of sample space Ω .
 - E.g. $\Omega = \{H,T\}^3$, $F_0 = \{TTT, HHT, HTH, THH\}$ (Even no. Hs). $F_1 = \{HTT, THT, TTH, HHH\}$ (Odd no. Hs).
- Events are mutually exclusive if they are disjoint.
 E.g. F₀ and F₁ above.
- A probability distribution is a function $p: \Omega \mapsto \mathcal{R}$
- The probability distribution assigns a probability 0 ≤ P(E) ≤ 1 to each event E.

Properties of Probability Function

• For any event E in Ω , $0 \le P(E) \le 1$.

•
$$P(\Omega) = 1$$

 For any finite or countably infinite sequence of disjoint events E₁, E₂, ...

$$Pr(\bigcup_{i>1} E_i) = \sum_{i>1} P(E_i)$$

Probability Distributions

• If $\Omega = \mathbb{R}^n$, probability density $p(x_1, ..., x_n)$ can be integrated over a volume to give a probability. E.g. $A = \{2 \le x \le 3.5\}$, $B = \{y \le 15\}$

$$P(A) = \int_2^{3.5} \int_{-\infty}^{\infty} p(x, y) \, dx \, dy$$
$$P(A, B) = \int_2^{3.5} \int_{-\infty}^{15} p(x, y) \, dx \, dy$$
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \, dx \, dy = 1$$

Sets of Events

- Joint probability $P(A \cap B) = \sum_{e \in A \cap B} p(e)$
 - Notation: $P(A,B) = P(A \cap B)$
- Probability of a union $P(A \cup B) = \sum_{e \in A \cup B} p(e)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
- Complement of event A: $\overline{A} = \Omega A.P(A \cup \overline{A}) = 1$

Probabilities of Events

- If events A and B are mutually exclusive
 - $P(A \cap B) = 0$
 - $P(A \cup B) = P(A) + P(B)$
- Conditional probability of A given B,
 P(A/B) = P(A,B)/P(B) or P(A,B) = P(A/B)P(B).
- Events A and B are statistically independent
 if P(A/B) = P(A), i.e., P(A,B) = P(A)P(B)

Marginal Probability

• Given a sample space $\Omega = K^2$ containing pairs of events A_i, B_j over K, the **marginal probability** is $P(A) = \sum_j P(A, B_j)$, where B_j are mutually exclusive.

Principle of Exclusion/Inclusion

- Let |A| = size of A
- |A∪B| = |A|+|B| |A∩B|
- |A∪B ∪ C| =
 |A|+|B|+|C| |A∩B|
 |A∩C| |B∩C| +
 |A∩B ∩C|

Principle of Inclusion/Exclusion

$$Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} Pr(E_i) - \sum_{i < j} Pr(E_i \cap E_j) + \sum_{i < j < k} Pr(E_i \cap E_j \cap E_k) - \dots + (-1)^{n+1} \sum_{i_1 < i_2 < \dots < i_n} Pr(\bigcap_{i=1}^{n} E_i)$$

Proof Use induction. Assume true for *n-1* sets.

Let $F_i = E_i$ for $1 \le i \le n-2$ and let $F_{n-1} = E_{n-1} \cup E_n$ and apply $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Application of Inclusion/Exclusion

• For l odd, $(-1)^{l+1} = 1$

$$Pr(\bigcup_{i=1}^{n} E_{i}) \leq \sum_{i=1}^{n} Pr(E_{i}) - \sum_{i < j} Pr(E_{i} \cap E_{j}) + \sum_{i < j < k} Pr(E_{i} \cap E_{j} \cap E_{k}) - \dots + (-1)^{l+1} \sum_{i_{1} < i_{2} < \dots < i_{l}} Pr(\bigcap_{i=1}^{l} E_{i})$$

• For l even, $(-1)^{l+1} = -1$ $Pr(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} Pr(E_i) - \sum_{i < j} Pr(E_i \cap E_j) + \sum_{i < j < k} Pr(E_i \cap E_j \cap E_k) - \cdots + (-1)^{l+1} \sum_{i_1 < i_2 < \cdots < i_l} Pr(\bigcap_{i=1}^{l} E_i)$

Special Application of Inclusion/Exclusion

$$\sum_{i=1}^{n} Pr(E_i) - \sum_{i < j} Pr(E_i \cap E_j) \le Pr(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} Pr(E_i)$$

- Important sample spaces consists of Cartesian products of spaces
 - $\Omega = \{(H,H), (H,T), (T,H), (T,T)\} = \{H,T\}^2$
 - $\Omega = A^n = \{e_1, e_2, ..., e_n\}, e_i \text{ in } A.$
 - $P_{1,2}(H,H) = \text{prob. of event } (H,H).$
 - E.g. P(H,H) = .04, P(H,T)=P(T,H) = .16, P(T,T) = .64
- They can model occurrences over time or space or both

Event Product Spaces

- Given events A and B with joint probability
 P(A,B), P(A) is the marginal probability of A.
- E.g.

•
$$P_1(H) = P_{12}(H,H) + P_{12}(H,T) = .04 + .16 = .20$$

•
$$P_1(T) = P_{1.2}(T,H) + P_{1.2}(T,T) = .16 + .64 = .80$$

- Consider events H and T on successive trials that are independent.
 - E.g. $P_{1.2}(H,T) = P_1(H) P_2(T) = .2 \times .8 = .16$

Product Events

- Events are identically distributed if they have the same probability distribution.
 - Outcomes in a pair of H,T trials are i.d.
 - $P_1 = P_2$, that is, $P_1(e) = P_2(e)$ for all e in {H,T}
- Events are independent and identically distributed (i.i.d.) if they are statistically independent and identically distributed.

Random Variables

- A random variable v is a function $v: \Omega \mapsto \mathcal{R}$
 - E.g. $\Omega = \{H,T\}, v(H) = 1, v(T) = 0$
- Expectation (average value) of a r.v. v is $E(v) = \overline{x} = \sum_{e \in \Omega} v(e)p(e)$

• E.g. $\overline{x} = 1 \times .2 + 0 \times .8 = .2$

Expectation of sum is sum of expectations

$$E(x_1 + \dots + x_n) = E(x_1) + \dots + E(x_n)$$

Geometric Random Variable

$$Pr(n) = (1-p)^{n-1}p \text{ for } 0 \le n$$

$$\overline{n} = \sum n(1-p)^{n-1}p = p \frac{d(\sum z^n)}{dz}|_{z=1-p}$$

$$\overline{n} = p \frac{d}{dz} (1-z)^{-1} |_{z=1-p} = 1/p$$

Moments of Random Variables

- Second moment of a r.v. $E(v^2) = \sum_e v^2(e)p(e)$
- kth moment or a r.v. $E(v^k) = \sum_e v^k(e) p(e)$
- Variance

$$Var(v) = \sigma^2 = E((v - E(v))^2) = E(v^2) - E^2(v)$$

• Standard deviation $\sigma = \sqrt{Var(v)}$

Examples of Probability Distributions

- Uniform: P(k) = 1/n for $1 \le k \le n$
- **Binomial**: n i.i.d. trials, $\Omega = \{H,T\}^n$, $P(H) = \alpha$ and $P(T) = \beta = 1 \alpha$. P(k) = Pr(k H's occur)

$$P(k) = \binom{n}{k} \alpha^k \beta^{n-k}, \quad 0 \le k \le n$$

- Poisson: $P_{\nu}(n) = \frac{\nu^n e^{-\nu}}{n!}, \quad 0 \le n < \infty$
 - Is limit of binomial when $\nu = \alpha n$ and n large.

Means and Variances of Probability Distributions

• Uniform:
$$\overline{x} = \sum_{k=1}^{n} k/n = (n+1)/2$$

 $\overline{x^2} = \sum_{k=1}^{n} k^2/n = (n+1)(n+1/2)/3$

• Binomial: $\overline{x} = n\alpha$

$$\overline{x^2} = \sigma^2 + E^2(x), \ \sigma = \sqrt{n\alpha\beta}$$

• Poisson: $\overline{x} = \nu$ $\overline{x^2} = \sigma^2 + E^2(x), \ \sigma = \sqrt{\nu}$

Markov's Inequality

• Let X be a **positive** r.v., $Pr(X \ge a) \le \frac{E(X)}{a}$

Proof Because $1 \le x/a$ when $x \ge a$

$$Pr(x \ge a) = \sum_{x \ge a} p(x)$$

$$\leq \sum_{x \ge a} p(x)(x/a)$$

$$\leq \sum_{x} p(x)(x/a)$$

$$= \frac{E(x)}{a}$$

• Let X be a r.v. $Pr(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$

Proof Note $1 \le ((x - \overline{x})/a)^2$ when $|x - \overline{x}| \ge a$

Let $A = \{x \text{ such that } |x - E(x)| \ge a\}$

$$Pr(|X - E(X)| \ge a) = \sum_{x \in A} p(x)$$

$$\le \sum_{x} p(x) \frac{(x - \overline{x})^2}{a^2}$$

$$= \frac{Var(x)}{a^2}$$

Moment Generating Function

• $g(t) = e^{tx}$ is a function that can be used to compute moments and Chernoff bounds on tails of probabilities, i.e. $P(x \ge X)$

$$\overline{x} = \frac{d g(t)}{d t} \mid_{t=0}$$

$$\overline{x^2} = \frac{d^2 g(t)}{d t^2} \mid_{t=0}$$

$$\overline{x^k} = \frac{d^k g(t)}{d t^k} \mid_{t=0}$$

Moment Generating Functions

• Uniform:

$$g_U(t) = \sum_{k=1}^n e^{tk} \frac{1}{n} = \frac{1}{n} \frac{e^{t(n+1)} - e^t}{e^t - 1}$$

• Binomial:

$$g_B(t) = \sum_{k=0}^n e^{tk} \binom{n}{k} \alpha^k \beta^{n-k} = \left(e^t \alpha + \beta \right)^n$$

Poisson:

$$g_B(t) = \sum_{n=0}^{\infty} e^{tn} \frac{\nu^n e^{-\nu}}{n!} = \sum_{n=0}^{\infty} \frac{(\nu e^t)^n e^{-\nu}}{n!} = e^{\nu(e^t - 1)}$$

Chernoff Bound

• Let X be a r.v. $Pr(X \ge a) \le e^{-ta}g(t)$ for t > 0.

Proof Because $e^{t(x-a)} \ge 1$ when $x \ge a \& t \ge 0$

$$Pr(X \ge a) = \sum_{x \ge a} p(x)$$

$$\le \sum_{x} p(x) e^{t(x-a)}$$

$$= \frac{g(t)}{e^{ta}}$$

Bounding Tails of a Binomial

- $E(x) = n\alpha$, $Var(x) = \sqrt{n\alpha\beta}$ $g(t) = \sum_{k=0}^{n} {n \choose k} \alpha^k \beta^{n-1} e^{tk} = (\alpha e^t + \beta)^n$
- Markov $Pr(X \ge a) \le \frac{E(X)}{a} = \frac{n\alpha}{a}$
- Chebyshev $Pr(|X E(X)| \ge a) \le \frac{Var(X)}{a^2} = \frac{n\alpha\beta}{a^2}$
- Chernoff $Pr(X \ge a) \le e^{-ta}g(t) = e^{-ta}(\alpha e^t + \beta)^n$

Chernoff Bound on Binomial Distribution

- $Pr(X \ge a) \le e^{-ta}g(t) = e^{-ta}(\alpha e^t + \beta)^n$
 - Choose $t = t_0$ to minimize bound
 - Note that $e^{-ta}g(t) = E(e^{t(z-a)})$ is convex because its second derivative is positive.

- Thus, at t_0 the first derivative is zero.
- That is $t_0 = \ln\left(\frac{a\beta}{n}\right) \ln\left(\left(1 \frac{a}{n}\right)\alpha\right)$ and $Pr(X \ge a) \le e^{\theta(n,\alpha)}$ where $\theta(n,\alpha) = n(\rho \ln \alpha + (1-\rho) \ln \beta + H(\rho))$
- Here $\rho = a/n$ and $H(y) = -y \ln y (1-y) \ln (1-y)$

- n=100, $\alpha=.5$, $\beta=.5$, a=70, E(x)=50, Var(x)=5
- Markov: $Pr(X \ge 70) \le \frac{E(X)}{70} = \frac{50}{70} = .714$
- Chebyshev: $Pr(|X 50| \ge 20) \le \frac{25}{400} = .0625$ implies $Pr(X \ge 70) \le 2 \times \frac{25}{400} = .125$
- Chernoff: $\rho = .7$ and $H(\rho) = .61086$ $\theta(\rho, \alpha) = n(\rho \ln \alpha + (1-\rho) \ln \beta + H(\rho)) = -8.228$ implies $Pr(X > 70) < e^{\theta(\rho, \alpha)} = .000267$
- Exact: $Pr(X \ge 70) = .00003$

- Each person equally likely to have day x as birthday, 1 ≤ x ≤ 365
- In a group of n persons, what is probability P_B that at least two have same birthday?
 - $1-P_B = 365(365-1)...(365-n+1)/365^n$
 - $P_B \approx .5$ when $n \approx 23!$

Balls in Bins

- m balls thrown into n bins independently and uniformly at random
- How large should m be to ensure that all bins contain at least one ball with prob. ≥ 1-ε?
- Coupon collector problem:
 - C coupon types
 - Each box equally likely to contain any coupon type
 - How many boxes should be purchased to collect all coupons with probability at least 1-ε?

Coupon Collector Problem

- C coupons, one per box with probability 1/C in a box
- What is E(X), X = no. boxes to collect all coupons?
- $X = x_1 + ... + x_C$, $x_i = \text{no. boxes until } i\text{th coupon is collected. Prob. of a new coupon: } p_i = 1-(i-1)/C$
- x_i is geometric r.v. with $Pr(x_i = n) = (1-p_i)^{n-1}p_i$
 - $E(x_i) = 1/p_i = C/(C-i+1)$
- $E(X)=E(x_1)+...+E(x_C)=\sum_{i=1}^{C}\frac{C}{C-i+1}=C\sum_{j=1}^{C}\frac{1}{j}\approx C\ln C$

Coupon Collector Problem with Failures

In this model the probability that a coupon is not collected is $1-p_s$. The probability that a specific coupon is collected is p_s/C .

Theorem Let T = no. trials to ensure all C coupons collected with probability = $1-\varepsilon$ in coupon collector problem with failures satisfies

$$\frac{C}{p_s(1+p_s/C)} \ln\left(\frac{C}{\epsilon(1+\epsilon)}\right) \le T \le \frac{C}{p_s} \ln\left(\frac{C}{\epsilon}\right)$$

Special Application of Inclusion/Exclusion

$$\sum_{i=1}^{n} Pr(E_i) - \sum_{i < j} Pr(E_i \cap E_j) \le Pr(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} Pr(E_i)$$

Coupon Collection with Failures

Proof Let E_i be event *i*th coupon not collected after T trials. $P(E_i) = (1 - p_s/C)^T$ Also

$$P(E_i \cap E_j) = (1 - p_i - p_j)^T = (1 - 2p_s/C)^T$$

The goal is to find T so that $Pr(\bigcup_{i=1}^n E_i) = \epsilon$

Using Inclusion/Exclusion & $(1-2x) \le (1-x)^2$

$$Pr(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} Pr(E_i) = C(1 - p_s/C)^T$$

$$\sum_{i=1}^{n} Pr(E_i) - \sum_{i < j} Pr(E_i \cap E_j) \le Pr(\bigcup_{i=1}^{n} E_i)$$

$$C(1 - p_s/C)^T - \frac{C^2}{2}(1 - p_s/C)^{2T} \le$$

Coupon Collection with Failures

Then

$$C (1 - p_s/C)^T \left[1 - \frac{C}{2}(1 - p_s/C)^T\right] \le \epsilon \le C (1 - p_s/C)^T$$

Equivalently $z(1-z/2) \le \epsilon \le z$ for $z = C(1-p_s/C)^T$ but this implies

$$\epsilon \le z \le \epsilon (1+\epsilon)$$
 if $\epsilon \le \sqrt{2} - 1 = .414214$

Using $e^{-x(1+x)} \le 1 - x \le e^{-x}$ when $x = p_s/C \le .5$ or $C \ge 2$

gives the desired result.

Conclusion

 Methods of bounding tails of probability distributions can be very useful.