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The Role of Probability 
The manufacture of devices with nanometer-
scale dimensions will necessarily introduce 
randomness into these devices. 

Some device dimensions are so small that 
their position cannot be accurately controlled

For this reason, probability theory will play a 
central role in this area
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Sample Spaces
Probabilities estimate the frequency of outcomes 
of random experiments.

Outcomes can be from a finite or countable 
sample space (set) Ω of events or be tuples
drawn over reals R.

Coin toss: Ω = {H,T}
Packets to a URL per day: Ω = N (positive integers)
Rain in cms/month in Prov.: Ω = R (reals)
Rain and sunshine/month: Ω = R2
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Probability Space
Sample space: all possible outcomes

Events: A family F of subsets of sample space Ω.
E.g. Ω = {H,T}3, F0 = {TTT, HHT, HTH, THH} (Even no. 
Hs). F1 = {HTT, THT, TTH, HHH} (Odd no. Hs). 

Events are mutually exclusive if they are disjoint. 
E.g. F0 and F1 above.

A probability distribution is a function                  

The probability distribution assigns a probability
0 ≤ P(E) ≤ 1 to each event E.
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Properties of Probability 
Function

For any event E in Ω, 0 ≤ P(E) ≤ 1.

P(Ω) = 1

For any finite or countably infinite sequence 
of disjoint events E1, E2, …
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Probability Distributions

If Ω = Rn, probability density p(x1,…xn) can 
be integrated over a volume to give a 
probability. E.g. 
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Sets of Events

Joint probability P(A   B) = 
Notation: P(A,B) = P(A   B) 

Probability of a union P(A  B) =
P(A  B) = P(A) + P(B) – P(A  B)

Complement of event A: A = Ω–A.P(A   A)=1
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Probabilities of Events

If events A and B are mutually exclusive
P(A   B) = 0
P(A   B) = P(A) + P(B)

Conditional probability of A given B,   
P(A/B) = P(A,B)/P(B) or P(A,B) = P(A/B)P(B).

Events A and B are statistically independent
if P(A/B) = P(A), i.e., P(A,B) = P(A)P(B)
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Marginal Probability

Given a sample space Ω = K2 containing 
pairs of events Ai,Bj over K, the marginal
probability is P(A) =  ∑j P(A,Bj), where Bj are 
mutually exclusive.
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Principle of 
Exclusion/Inclusion

Let |A| = size of A

|A∪B| = |A|+|B| -
|A∩B| 

|A∪B ∪ C| = 
|A|+|B|+|C| - |A∩B| 
- |A∩C| - |B∩C| + 
|A∩B ∩C| 

A B

C

B ∩ C
A ∩ C

A ∩ B

A ∩ B ∩ C
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Principle of 
Inclusion/Exclusion

Proof Use induction. Assume true for n-1 sets.
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Application of 
Inclusion/Exclusion

For odd, (-1)l+1 = 1

For   even , (-1)l+1 = -1
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Special Application of 
Inclusion/Exclusion
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Event Product Spaces

Important sample spaces consists of 
Cartesian products of spaces
Ω = {(H,H), (H,T), (T,H), (T,T)} = {H,T}2

Ω = An = {e1, e2, …, en}, ei in A.
P1,2(H,H) = prob. of event (H,H).
E.g. P(H,H) =.04, P(H,T)=P(T,H) =.16,P(T,T) =.64

They can model occurrences over time or 
space or both
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Event Product Spaces

Given events A and B with joint probability 
P(A,B), P(A) is the marginal probability of A.
E.g.

P1(H) = P1,2(H,H) + P1,2(H,T) = .04 + .16 = .20
P1(T) = P1,2(T,H) + P1,2(T,T) = .16 + .64 = .80

Consider events H and T on successive trials 
that are independent.

E.g. P1,2(H,T) = P1(H) P2(T) = .2 x .8 = .16
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Product Events

Events are identically distributed if they 
have the same probability distribution.

Outcomes in a pair of H,T trials are i.d.
P1 = P2, that is, P1(e) = P2(e) for all e in {H,T}

Events are independent and identically 
distributed (i.i.d.) if they are statistically 
independent and identically distributed.
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Random Variables

A random variable v is a function
E.g. Ω = {H,T}, v(H) = 1, v(T) = 0

Expectation (average value) of a r.v. v is

E.g.

Expectation of sum is sum of expectations
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Geometric Random Variable
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Moments of Random Variables

Second moment of a r.v.

kth moment or a r.v. 

Variance

Standard deviation 
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Examples of Probability 
Distributions

Uniform: P(k) = 1/n for 1 ≤ k ≤ n

Binomial: n i.i.d. trials, Ω ={H,T}n, P(H) = α
and P(T) = β = 1- α. P(k) = Pr(k H’s occur)

Poisson:
Is limit of binomial when                   and n large. 
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Means and Variances of 
Probability Distributions

Uniform:

Binomial:

Poisson: 
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Markov’s Inequality

Let X be a positive r.v.,

Proof Because 
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Chebyshev’s Inequality

Let X be a r.v.

Proof Note
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Moment Generating Function

is a function that can be used to 
compute moments and Chernoff bounds on 
tails of probabilities, i.e. 
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Moment Generating Functions

Uniform:

Binomial:

Poisson:  
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Chernoff Bound

Let X be a r.v.

Proof Because
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Bounding Tails of a Binomial

Markov

Chebyshev

Chernoff
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Chernoff Bound on Binomial 
Distribution

Choose t = t0 to minimize bound
Note that                                        is convex 
because its second derivative is positive.
Thus, at t0 the first derivative is zero.
That is                                                and

Here 

t0
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Comparison of Bounds

n=100, α=.5, β=.5, a=70, E(x)=50, Var(x) = 5
Markov:
Chebyshev:
implies   
Chernoff: 

implies
Exact:



Lect 08 Probability Theory CSCI 2570 @John E Savage 30

Birthday Problem

Each person equally likely to have day x as 
birthday, 1 ≤ x ≤ 365

In a group of n persons, what is probability PB
that at least two have same birthday?

1-PB = 365(365-1)…(365-n+1)/365n

PB ≈ .5 when n ≈ 23!
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Balls in Bins

m balls thrown into n bins independently and 
uniformly at random
How large should m be to ensure that all bins 
contain at least one ball with prob. ≥ 1-ε?
Coupon collector problem:

C coupon types
Each box equally likely to contain any coupon type
How many boxes should be purchased to collect 
all coupons with probability at least 1-ε?
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Coupon Collector Problem
C coupons, one per box with probability 1/C in a box

What is E(X), X = no. boxes to collect all coupons?

X = x1+…+xC , xi = no. boxes until ith coupon is 
collected. Prob. of a new coupon: pi = 1-(i-1)/C

xi is geometric r.v. with Pr(xi = n) = (1-pi)n-1pi

E(xi) = 1/pi = C/(C-i+1)
E(X)=E(x1)+…+E(xC) =
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Coupon Collector Problem 
with Failures

In this model the probability that a coupon is not 
collected is 1-ps. The probability that a specific 
coupon is collected is ps/C.

Theorem Let T = no. trials to ensure all C coupons 
collected with probability = 1-ε in coupon collector 
problem with failures satisfies
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Special Application of 
Inclusion/Exclusion
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Coupon Collection with 
Failures

Proof Let Ei be event ith coupon not collected 
after T trials.                                  Also

The goal is to find T so that 
Using Inclusion/Exclusion & 
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Coupon Collection with 
Failures

Then 

Equivalently                             
but this implies

Using

gives the desired result.
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Conclusion

Methods of bounding tails of probability 
distributions can be very useful.


