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The Role of Probability

e The manufacture of devices with nanometer-
scale dimensions will necessarily introduce
randomness into these devices.

e Some device dimensions are so small that
their position cannot be accurately controlled

e For this reason, probability theory will play a
central role in this area
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Sample Spaces

e Probabilities estimate the frequency of outcomes
of random experiments.

e Outcomes can be from a finite or countable
sample space (set) Q of events or be tuples
drawn over reals R.

Coin toss: Q = {H, T}

Packets to a URL per day: Q = N (positive integers)
Rain in cms/month in Prov.: Q = R (reals)

Rain and sunshine/month: Q = R?
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Probability Space

e Sample space: all possible outcomes

e Events: A family F of subsets of sample space Q.

E.g.Q={HT¥ F,={TTT, HHT, HTH, THH} (Even no.
Hs). F, = {HTT, TI9IT TTH, HHH} (Odd no. Hs).

e Events are mutually exclusive if they are disjoint.
E.g. F,and F, above.

e A probability distribution is a function p : 2 — R

e The probability distribution assigns a probability
0<P(E)<1toeacheventE.
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Properties of Probability
Function

e ForanyeventEIinQ,0=<P(E)=<1.
o P(Q)=1

e For any finite or countably infinite sequence
of disjoint events E,, E,, ...

Pr(U;>1 E;) = >i>1 P(E;)
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Probability Distributions

o If Q =R", probability density p(x,,...X,) can
be integrated over a volume to give a
probability. E.g. A={2<x<3.5}, B={y <15}

P(A) = [3° [ p(z,y) d dy
P(A,B) = [3° [12 p(x,y) dz dy
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Sets of Events

e Joint probability P(ANB) = Yccann p(e)
Notation: P(A,B) = P(AMB)

e Probability of a union P(AUB) =>_ccaun p(e)
P(AuB) = P(A) + P(B) — P(ANB)

e Complement of event A;: A = Q—-A.P(AUA)=1
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Probabilities of Events

e |If events A and B are mutually exclusive
P(ANB) =0
P(AuB) = P(A) + P(B)

e Conditional probability of A given B,
P(A/B) = P(A,B)/P(B) or P(A,B) = P(A/B)P(B).

e Events A and B are statistically independent
if P(A/B) = P(A), i.e., P(A,B) = P(A)P(B)
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Marginal Probability

e Given a sample space Q = K? containing
pairs of events A;,B, over K, the marginal
probability is P(A) = 2, P(A,B,), where B, are
mutually exclusive.
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Principle of
Exclusion/inclusion

o Let |A| = size of A

o |AUB| = |A[+[B] -

|ANB|

e |ALB U C| =
|Al+|B|+[C] - |AB]
- |ANC| - IBNC| +

|AnB NC|
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Principle of
Inclusion/Exclusion

P?“(U?zl Ez) — Z?’:l PT(Ei) — Zi<j PT(Ei A Ej)‘|'
Yicj<k Pr(E;NE;NEL) — -+
()" TS i, PNy E;)

Proof Use induction. Assume true for n-71 sets.

Let F; = E; for 1 <:<n-—2andlet F,_1 =
E,_1UFEy, and apply P(AUB) = P(A)+ P(B) —
P(AN B)
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Application of
Inclusion/Exclusion

e For lodd, (-1)*1 =1
Pr(Ull, B;) < Y4 Pr(E;) — Zz<gPT(EﬁE)+
Zz< <kP7“(E ﬂE ﬂEk)— -4
(— 1)H_1Zzl<z2< <,,/ler(ﬂ7lJ 1 E;)

e Forleven, (-1)*1 = -1
Pr(Ur— 1E) > Y, Pr(E;) — i<y Pr(FE; NE; )+
ZZ<J<,€PT(E NE;NEg) — - —|—
( 1)H—1 Zzl<7,2< <1 Pr(ﬂg_lE)
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Special Application of
Inclusion/Exclusion oo

S

n
Y Pr(ENE;) < Pr(|J E;) < ) Pr(E;)
1<J 1=1 1=1

> Pr(E)-—
i=1
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Event Product Spaces

e Important sample spaces consists of
Cartesian products of spaces
Q={(H,H), (H,T), (T,H), (T,T)} = {H,TF
Q=A"={e,, e, ..., e}, einA.
P, ,(H,H) = prob. of event (H,H).
E.g. P(H,H) =.04, P(H,T)=P(T,H) =.16,P(T,T) =.64

e They can model occurrences over time or
space or both

Lect 08 Probability Theory CSCI 2570 @John E Savage 14



Event Product Spaces

e Given events A and B with joint probability
P(A,B), P(A) is the marginal probability of A.
e E.Q.
P,(H) = P, ,(H,H) + P, ,(H,T) = .04 + .16 = .20
P,(T) =P, A(T,H) + P, ,(T,T) = .16 + .64 = .80

e Consider events H and T on successive trials
that are independent.
E.g. P, ,(H,T)=P,(H) Py(T)=.2x.8=.16
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Product Events

e Events are identically distributed if they
have the same probability distribution.

Outcomes in a pair of H,T trials are i.d.
P,=P,, thatis, P,(e) = P,(e) forall e in {H,T}

e Events are independent and identically
distributed (i.i1.d.) if they are statistically
iIndependent and identically distributed.
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Random Variables

e Arandom variable vis a function v : 2 — 'R
Eg.Q={HT}, v(H) =1,vT)=0

e Expectation (average value) ofar.v. vis
E(w) =7 = Y ec v(e)p(e)
Eg 2=1%x.240x.8=.2

e Expectation of sum is sum of expectations
E(xy+ -+ xn) = E(z1) + - + E(zn)
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Geometric Random Variable

Pr(n) =(1—p)"1p for 0 <n

n=Y n(l—p)" lp= pd (Z =) l2=1—p
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Moments of Random Variables

e Second moment ofar.v. E(v?) = 3. v2(e)p(e)
e kth momentorar.v. E(F) =3, v*(e)p(e)

e Variance
Var(v) =02 = E((v—E))?) = E(v?) — E2(v)

e Standard deviation o = /Var(v)
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Examples of Probability
Distributions

e Uniform: P(k) = 1/nfor 1<k<n

e Binomial: ni.i.d. trials, Q ={H,T}", P(H) = a
and P(T) =08 =1-a. P(k) = Pr(k H’s occur)

P(k) = (Z’)akﬁn_k, 0<Ek<n

n_

4
e Poisson:Py(n) =", 0<n < o0
Is limit of binomial when v = an and n large.
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Means and Variances of
Probability Distributions

e Uniform: z=3}_,k/n=(n+1)/2
2 = Zzle/n:(n—l—l)(n—l—l/Q)/?)

e Binomial: 7= = nao
2 =2 + E?(z), o0 = v/naf

e Poisson: T =v
D> __ 2 2 _
<=0+ E<(x), 0 = /v
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Markov’s Inequality

E(X)

e Let X be a positiver.v.,Pr(X > a) <

Proof Because 1 < x/a when = > a

Pr(r>a) = Zajza p(x)
< Ye>a P(z)(z/a)

< Xy p(z)(z/a)
— EQ@)

a
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Chebyshev’s Inequality

e LetXbearv. Pr(|X - E(X)|>a)< Yoo

Proof Note 1< ((z—7)/a)? when |z —Z| > a
Let A = {x such that |z — E(z)| > a}

Pr(|X — E(X)| > a) = Xzcap(z)

< (33—5)2
-~ Zx p(m) a2
— VaTQ(az)

a
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Moment Generating Function

o ¢g(t) = e is a function that can be used to
compute moments and Chernoff bounds on
tails of probabilities, i.e. P(z > X)

_ da(t 5 d? g(t

= — 9()‘t 5 2 — d%g)‘tzo
kK d¥g(®)

L = dtk ‘t O
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Moment Generating Functions

e Uniform: 1)
_ th' 1 _ 1e\1 —e
gU(t) — 7]3:1 € T n -1
e Binomial:

gp(t) = Si_g et (P)akprF = (ela+ 8)"

e Poisson:

n_— t\n _ —v
gp(t) = Y00 jetn viel = yroo ((we)ie P — ou(e'~1)
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Chernoff Bound

o Let Xbear.v. Pr(X >a) <e tqg(t) for t > 0.

Proof Because et(z=2) > 1 when 2 >a & t > 0

Pr(X >a) = Xz>qap(7)

< Y p(x)et(z—a)

— g(t)
eta
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Bounding Tails of a Binomial

o F(xz) = na, Var(x) = vnap
9(t) = Yo ()"0 tet* = (ac' + )"

e Markov Pr(X > a) < E(j() _ na

a

e Chebyshev Pr(|X — E(X)| > a) < Yor{X) — naj

e Chernoff Pr(X > a) < e tg(t) = e 1 (ael + B)™
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Chernoff Bound on Binomial
Distribution

o Pr(X >a) < e tg(t) = et (aet + B)"

Choose t = f, to minimize bound
Note that e ~t%g(t) = E(e!(*~))is convex

because its second derivative is positive.

Thus, at t, the first derivative is zero. t/

Thatis tg = In (%) —In ((1 - %) a) and
Pr(X > a) < ?(na) where
O(n,a) =n(pina+ (1 —p)InB+ H(p))

Here p=a/n and H(y) = —ylny— (1 —y)In(1 —y)
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Comparison of Bounds

e N=100, a=.5, B=.5, a=70, E(x)=50, Var(x) = 5

e Markov: Pr(X >70) < E(X) — ?8 — 714

e Chebyshev:Pr(|X — 50| > 20) < 2 =.0625

implies Pr(X > 70) <2 x 2> =.125

e Chernoff: p=.7 and H(p) = .61086
0(p,a) =n(pIna+(l—p)InB+H(p)) = —8.228
implies Pr(X > 70) < (7% = 000267

e Exact: Pr(X > 70) = .00003
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Birthday Problem

e Each person equally likely to have day x as
birthday, 1 < x < 365

e In a group of n persons, what is probability Py
that at least two have same birthday?

1-Pg = 365(365-1)...(365-n+1)/365"
Pg = .5 when n = 23!
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Balls in Bins

e m balls thrown into n bins independently and
uniformly at random

e How large should m be to ensure that all bins
contain at least one ball with prob. = 1-¢?

e Coupon collector problem:
C coupon types
Each box equally likely to contain any coupon type

How many boxes should be purchased to collect
all coupons with probability at least 1-€?
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Coupon Collector Problem

e C coupons, one per box with probability 7/C in a box
e What is E(X), X = no. boxes to collect all coupons?

o X =x,+...+X,, X; = no. boxes until ith coupon is
collected. Prob. of a new coupon: p; = 1-(i-1)/C

e X. is geometric r.v. with Pr(x;, = n) = (1-p)™"p,
E(x) = 1/p;, = C/(C- i+1)
o E(X)=E(x)*+...+E(Xo) =51 o1 = C L5~ CInC
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Coupon Collector Problem
with Failures

In this model the probability that a coupon is not
collected is 1-p.. The probability that a specific
coupon is collected is p/C.

Theorem Let T = no. trials to ensure all C coupons
collected with probability = 1-€ in coupon collector
problem with failures satisfies

ity '™ (cage) ST < i (€)
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Special Application of
Inclusion/Exclusion oo

S

n
Y Pr(ENE;) < Pr(|J E;) < ) Pr(E;)
1<J 1=1 1=1

> Pr(E)-—
i=1

Lect 08 Probability Theory CSCI 2570 @John E Savage 34



Coupon Collection with
Failures

Proof Let E; be event ith coupon not collected
after T trials. P(E;) = (1 — ps/C)T Also
P(E;NE;) = (1—p;—p))" =(1-2ps/C)"
The goalisto find T sothat Pr(U-, E;) =€

Using Inclusion/Exclusion & (1 —2z) < (1 —z)?
Pr(Uf=y B;) < Yoy Pr(E) = C(1 —ps/C)

2?21 Pr(E;) — ZKJ Pr(E;NE:; ) < PT(U” 1 E;)
C(1 —pS/C)T (1 PS/C)QT >~
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Coupon Collection with
Failures

Then
C(1—ps/CO)T 1 =51 —ps/O)T| <e<C(1—ps/O)T
Equivalently z(1 — z/2) < e < z for z = C (1 — ps/C)T
but this implies
e<z<e(l4e) ife<V2—-—1=.414214

Using e~2(1+2) <1 _ g < e % when z = ps/C < .5 or
C>2

gives the desired result.
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Conclusion

e Methods of bounding tails of probability
distributions can be very useful.
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